Tuesday, October 7, 2008

JAVA PLATFORM

Java refers to a number of computer software products and specifications from Sun Microsystems that together provide a system for developing application software and deploying it in a cross-platform environment. Java is used in a wide variety of computing platforms spanning from embedded devices and mobile phones on the low end to enterprise servers and supercomputers on the high end. Java is nearly ubiquitous in mobile phones, Web servers and enterprise applications, and while less common on desktop computers, Java applets are often used to provide improved functionality while browsing the World Wide Web.

Writing in the Java programming language is the primary way to produce code that will be deployed as Java bytecode, though there are compilers available for other languages such as JavaScript, Python and Ruby, and a native Java scripting language called Groovy. Java syntax borrows heavily from C and C++ but it eliminates certain low-level constructs such as pointers and has a very simple memory model where every object is allocated on the heap and all variables of object types are references. Memory management is handled through integrated automatic garbage collection performed by the Java Virtual Machine (JVM).

On 13 November 2006, Sun Microsystems made the bulk of its implementation of Java available under the GNU General Public License, although there are still a few parts distributed as precompiled binaries due to intellectual property restrictions
[edit] Platform
The Java platform is the name for a bundle of related programs, or platform, from Sun which allow for developing and running programs written in the Java programming language. The platform is not specific to any one processor or operating system, but rather an execution engine (called a virtual machine) and a compiler with a set of standard libraries that are implemented for various hardware and operating systems so that Java programs can run identically on all of them.

Different "editions" of the platform are available, including:

Java Card: refers to a technology that allows small Java-based applications (applets) to be run securely on smart cards and similar small memory footprint devices.
Java ME (Micro Edition): Specifies several different sets of libraries (known as profiles) for devices which are sufficiently limited that supplying the full set of Java libraries would take up unacceptably large amounts of storage.
Java SE (Standard Edition): For general purpose use on desktop PCs, servers and similar devices.
Java EE (Enterprise Edition): Java SE plus various APIs useful for multi-tier client-server enterprise applications.
As of September 2008[update], the current version of the Java Platform is specified as either 1.6.0 or 6 (both refer to the same version). Version 6 is the product version, while 1.6.0 is the developer version.

The Java Platform consists of several programs, each of which provides a distinct portion of its overall capabilities. For example, the Java compiler, which converts Java source code into Java bytecode (an intermediate language for the Java Virtual Machine (JVM)), is provided as part of the Java Development Kit (JDK). The Java Runtime Environment (JRE), complementing the JVM with a just-in-time (JIT) compiler, converts intermediate bytecode into native machine code on the fly. Also supplied are extensive libraries (pre-compiled into Java bytecode) containing reusable code, as well as numerous ways to deploy Java applications, including embedding them in a web page as an applet.

There are several other components, some available only in certain editions.

Java Virtual Machine

The heart of the Java Platform is the concept of a "virtual machine" that executes Java bytecode programs. This bytecode is the same no matter what hardware or operating system the program is running under. There is a JIT compiler within the Java Virtual Machine, or JVM. The JIT compiler translates the Java bytecode into native processor instructions at run-time and caches the native code in memory during execution.

The use of bytecode as an intermediate language permits Java programs to run on any platform that has a virtual machine available. The use of a JIT compiler means that Java applications, after a short delay during loading and once they have "warmed up" by being all or mostly JIT-compiled, tend to run about as fast as native programs. Since JRE version 1.2, Sun's JVM implementation has included a just-in-time compiler instead of an interpreter.

Although Java programs are platform independent, the code of the Java Virtual Machine (JVM) that execute these programs is not: Every supported operating platform has its own JVM.


Class libraries
In most modern operating systems, a large body of reusable code is provided to simplify the programmer's job. This code is typically provided as a set of dynamically loadable libraries that applications can call at runtime. Because the Java Platform is not dependent on any specific operating system, applications cannot rely on any of the pre-existing OS libraries. Instead, the Java Platform provides a comprehensive set of its own standard class libraries containing much of the same reusable functions commonly found in modern operating systems.

The Java class libraries serve three purposes within the Java Platform. First, like other standard code libraries, the Java libraries provide the programmer a well-known set of functions to perform common tasks, such as maintaining lists of items or performing complex string parsing. Second, the class libraries provide an abstract interface to tasks that would normally depend heavily on the hardware and operating system. Tasks such as network access and file access are often heavily intertwined with the distinctive implementations of each platform. The Java java.net and java.io libraries implement an abstraction layer in native OS code, then provide a standard interface for the Java applications to perform those tasks. Finally, when some underlying platform does not support all of the features a Java application expects, the class libraries work to gracefully handle the absent components, either by emulation to provide a substitute, or at least by providing a consistent way to check for the presence of a specific feature.


Languages

The word Java, by itself, usually refers to the Java programming language which was designed for use with the Java Platform. Programming languages are typically outside of the scope of the phrase "platform", although the Java programming language is listed as a core part of the Java platform. The language and runtime are therefore commonly considered a single unit.

Nevertheless, third parties have produced a number of compilers or interpreters which target the JVM. Some of these are for existing languages, while others are for extensions to the Java language itself. These include:

Groovy
Jython, a Python interpreter that include jythonc, a Python-to-Java bytecode compiler
Scala
JRuby, a Ruby interpreter
Rhino, a JavaScript interpreter
Kawa and SISC, both Scheme interpreters
ColdFusion, a dynamic language specialized for Web development which is compiled to Java bytecode.

Similar platforms

The success of Java and its write once, run anywhere concept has led to other similar efforts, notably the Microsoft .NET platform, appearing since 2002, which incorporates many of the successful aspects of Java. .NET in its complete form (Microsoft's implementation) is currently only fully available on Windows platforms, whereas Java is fully available on many platforms. .NET was built from the ground-up to support multiple programming languages, while the Java platform was initially built to support only the Java language (although many other languages have been made for JVM since).

.NET includes a Java-like language called Visual J# (formerly known as J++) that is not compatible with the Java specification, and the associated class library mostly dates to the old JDK 1.1 version of the language; for these reasons, it is more a transitional language to switch from Java to the Microsoft .NET platform, than a first class Microsoft .NET language. Visual J# has been discontinued with the release of Microsoft Visual Studio 2008.


Java Development Kit

The Java Development Kit (JDK) is a Sun product aimed at Java developers. Since the introduction of Java, it has been by far the most widely used Java SDK. It contains a Java compiler and a number of other important development tools as well as a full copy of the Java Runtime Environment.


History
The Java platform and language began as an internal project at Sun Microsystems in December 1990, providing an alternative to the C++/C programming languages. Engineer Patrick Naughton had become increasingly frustrated with the state of Sun's C++ and C APIs (application programming interfaces) and tools. While considering moving to NeXT, Naughton was offered a chance to work on new technology and thus the Stealth Project was started.

The Stealth Project was soon renamed to the Green Project with James Gosling and Mike Sheridan joining Naughton. Together with other engineers, they began work in a small office on Sand Hill Road in Menlo Park, California. They were attempting to develop a new technology for programming next generation smart appliances, which Sun expected to be a major new opportunity.

The team originally considered using C++, but it was rejected for several reasons. Because they were developing an embedded system with limited resources, they decided that C++ demanded too large a footprint and that its complexity led to developer errors. The language's lack of garbage collection meant that programmers had to manually manage system memory, a challenging and error-prone task. The team was also troubled by the language's lack of portable facilities for security, distributed programming, and threading. Finally, they wanted a platform that could be easily ported to all types of devices.

Bill Joy had envisioned a new language combining the best of Mesa and C. In a paper called Further, he proposed to Sun that its engineers should produce an object-oriented environment based on C++. Initially, Gosling attempted to modify and extend C++ (which he referred to as "C++ ++ --") but soon abandoned that in favor of creating an entirely new language, which he called Oak, after the tree that stood just outside his office.

By the summer of 1992, they were able to demonstrate portions of the new platform including the Green OS, the Oak language, the libraries, and the hardware. Their first attempt, demonstrated on September 3, 1992, focused on building a PDA device named Star7 which had a graphical interface and a smart agent called "Duke" to assist the user. In November of that year, the Green Project was spun off to become firstperson, a wholly owned subsidiary of Sun Microsystems, and the team relocated to Palo Alto, California. The firstperson team was interested in building highly interactive devices, and when Time Warner issued an RFP for a set-top box, firstperson changed their target and responded with a proposal for a set-top box platform. However, the cable industry felt that their platform gave too much control to the user and firstperson lost their bid to SGI. An additional deal with The 3DO Company for a set-top box also failed to materialize. Unable to generate interest within the TV industry, the company was rolled back into Sun.


Java meets the Internet

Java Web Start allows provisioning applications over the WebIn June and July 1994, after three days of brainstorming with John Gage, the Director of Science for Sun, Gosling, Joy, Naughton, Wayne Rosing, and Eric Schmidt, the team re-targeted the platform for the World Wide Web. They felt that with the advent of the first graphical web browser, Mosaic, the Internet was on its way to evolving into the same highly interactive medium that they had envisioned for cable TV. As a prototype, Naughton wrote a small browser, WebRunner, later renamed HotJava.

That year, the language was renamed Java after a trademark search revealed that Oak was used by Oak Technology, a manufacturer of video adaptor cards. The name Java was coined at a local coffee shop frequented by some of the members.[citation needed]

In October 1994, HotJava and the Java platform were demonstrated for some of the Sun executives. Java 1.0a was made available for download in 1994, but the first public release of Java and the HotJava browser was on 23 May 1995, announced by Gage at the SunWorld conference. His announcement was accompanied by a surprise announcement by Marc Andreessen, Executive Vice President of Netscape Communications Corporation, that Netscape browsers would be including Java support. On 9 January 1996, the JavaSoft group was formed by Sun Microsystems in order to develop the technology.


Version history

The Java language has undergone several changes since JDK (Java Development Kit) 1.0 was released on (January 23, 1996), as well as numerous additions of classes and packages to the standard library. Since J2SE 1.4, the evolution of the Java Language has been governed by the Java Community Process (JCP), which uses Java Specification Requests (JSRs) to propose and specify additions and changes to the Java platform. The language is specified by the Java Language Specification (JLS); changes to the JLS are managed under JSR 901.

JDK 1.1 was released on February 19, 1997. Major additions included an extensive retooling of the AWT event model, inner classes added to the language, JavaBeans and JDBC.

J2SE 1.2 (December 8, 1998) — Codename Playground. This and subsequent releases through J2SE 5.0 were rebranded Java 2 and the version name "J2SE" (Java 2 Platform, Standard Edition) replaced JDK to distinguish the base platform from J2EE (Java 2 Platform, Enterprise Edition) and J2ME (Java 2 Platform, Micro Edition). Major additions included reflection, a Collections framework, Java IDL (an IDL implementation for CORBA interoperability), and the integration of the Swing graphical API into the core classes. a Java Plug-in was released, and Sun's JVM was equipped with a JIT compiler for the first time.

J2SE 1.3 (May 8, 2000) — Codename Kestrel. Notable changes included the bundling of the HotSpot JVM (the HotSpot JVM was first released in April, 1999 for the J2SE 1.2 JVM), JavaSound, Java Naming and Directory Interface (JNDI) and Java Platform Debugger Architecture (JPDA).

J2SE 1.4 (February 6, 2002) — Codename Merlin. This was the first release of the Java platform developed under the Java Community Process as JSR 59. Major changes included regular expressions modeled after Perl, exception chaining, an integrated XML parser and XSLT processor (JAXP), and Java Web Start.

J2SE 5.0 (September 30, 2004) — Codename Tiger. Originally numbered 1.5, which is still used as the internal version number. Developed under JSR 176, Tiger added a number of significant new language features including the for-each loop, generics, autoboxing and var-args.

The current version, Java SE 6 (December 11, 2006) — Codename Mustang — is bundled with a database manager, facilitates the use of scripting languages (currently JavaScript using Mozilla's Rhino engine) with the JVM and has Visual Basic language support. As of this version, Sun replaced the name "J2SE" with Java SE and dropped the ".0" from the version number. Other major changes include scripting language support, support for pluggable annotations (JSR 269), lots of GUI improvements, including native UI enhancements to support the look and feel of Windows Vista, and improvements to the Java Platform Debugger Architecture (JPDA) & JVM Tool Interface for better monitoring and troubleshooting

Java SE 7 — Codename Dolphin. This is in the early planning stages. The Dolphin Project started up in August 2006, with release estimated in 2008. New builds including enhancements and bug fixes are released approximately weekly.

In addition to the language changes, much more dramatic changes have been made to the Java class library over the years, which has grown from a few hundred classes in JDK 1.0 to over three thousand in J2SE 5.0. Entire new APIs, such as Swing and Java2D, have been introduced, and many of the original JDK 1.0 classes and methods have been deprecated.


Usage

Desktop use
According to Sun, the Java Runtime Environment is found on over 700 million PCs. Microsoft has not bundled a Java Runtime Environment (JRE) with its operating systems since Sun Microsystems sued Microsoft for adding Windows-specific classes to the bundled Java runtime environment, and for making the new classes available through Visual J++. A Java runtime environment is bundled with Apple's Mac OS X, and many Linux distributions include the partially compatible free software package GNU Classpath.

Some Java applications are in fairly widespread desktop use, including the NetBeans and Eclipse integrated development environments, and file sharing clients such as LimeWire and Vuze. Java is also used in the MATLAB mathematics programming environment, both for rendering the user interface and as part of the core system.

Mobile devices
Java ME has become popular in mobile devices, where it competes with Symbian, BREW, and the .NET Compact Framework.

The diversity of mobile phone manufacturers has led to a need for new unified standards so programs can run on phones from different suppliers - MIDP. The first standard was MIDP 1, which assumed a small screen size, no access to audio, and a 32kB program limit. The more recent MIDP 2 allows access to audio, and up to 64kB for the program size. With handset designs improving more rapidly than the standards, some manufacturers relax some limitations in the standards, for example, maximum program size

No comments: